

Mechanical Specifications

-Life Cycle: >2 million cycles with a bend angle of 180° over an $8 \mathrm{~mm}\left(0.315^{\prime \prime}\right)$ radius
-Recommended Bend Radius: 2.5 mm to 8 mm
-Thickness: 0.13mm (0.005")
-Temperature Range: $-35^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$

SpectraFlex FLX

New Features

Compared to the Original Flex Sensor, SpectraFlex:

- has Better Repeatability!
- has Less Signal Drift!
- is More Flexible!
- and has an even Lower Profile!
(see comparison table for more details)

Electrical Specifications

-Flat Resistance: Varies with length, see Dimensional Diagram below
-Bend Resistance: greater than or equal to 2 times the flat resistance at 180° on an $8 \mathrm{~mm}\left(0.315^{\prime \prime}\right)$ radius (see "How it Works" below), the 55 mm version can achieve greater than or equal to 4 times the flat resistance.
-Power Rating (depending on size, varies with length and temperature): 1 Watt max. @ $25^{\circ} \mathrm{C}$, 0.5 Watt recommended

Material Cross-section

\square 0.13 [0.005] TOTAL THICKNESS*

* sensor only - pins and connector will be thicker and the thickness is dependent on the type of pin/connector selected

How It Works

Dimensional Diagram - Stocked Sizes

How to Order - Stock SpectraFlex Sensors

Comparison Chart - Original Flex Sensor [FS] vs SpectraFlex [FLX]

SPECIFICATION	FS FLX
Substrate: the base material of the sensor	Polyimide
Finished Overall Thickness:	$0.43 \mathrm{~mm}\left[0.017^{\prime \prime}\right]$
Flat Resistance (Ohms):	$10,000 \pm 30 \%$ $55 \mathrm{~mm}=18,000 \pm 20 \%$ $55 \mathrm{~mm}=12,000 \pm 20 \%$
Resistance Change Multiplier: defined as a function of bend radius (8 mm) and angular deflection (180°)	$>2 x$ $95 \mathrm{~mm}=>2 x$ $55 \mathrm{~mm}=>4 \mathrm{x}$
Repeatability: under controlled conditions	Never characterized. $\pm 2 \%$
Bidirectional: defined as measurable and repeatable output when bent in either direction	No, should only be bent in the direction shown in the "How it Works" section.
Operating Temperature:	$-35^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ (currently testing up to $150^{\circ} \mathrm{C}$)
Power Rating: $5 \mathrm{~V} D \mathrm{C},+25^{\circ} \mathrm{C}$	0.5 Watt continuous, 1 Watt Peak
Customizable:	Yes, will require extra NRE and Tooling charges.

BASIC FLEX SENSOR CIRCUIT:

Following are notes from the ITP Flex Sensor Workshop
"The impedance buffer in the Basic Flex Sensor Circuit (above) is a single-sided operational amplifier, used with these sensors because the low bias current of the op-amp reduces error due to impedance of the flex sensor as voltage divider. Suggested op-amps are the LM358 or LM324."
"You can also test your flex sensor using the simplest circuit, and skip the op-amp."
"Adjustable Buffer - a potentiometer can be added to the circuit to adjust the sensitivity range."

Figure 1.1
Figure 1.2
"Variable Deflection Threshold Switch - an op-amp is used and outputs either high or low depending on the voltage of the inverting input. In this way, you can use the flex sensor as a switch without going through a microcontroller."

"Resistance to Voltage Converter - use the sensor as the input of a resistance to voltage converter using a dual-sided supply op-amp. A negative reference voltage will give a positive output. Should be used in situations when you want to output at a low degree of bending."

